Copied to
clipboard

G = C3210SD32order 288 = 25·32

2nd semidirect product of C32 and SD32 acting via SD32/Q16=C2

metabelian, supersoluble, monomial

Aliases: C24.20D6, C3210SD32, (C3×Q16)⋊1S3, (C3×C6).39D8, Q161(C3⋊S3), (C3×C12).54D4, C24.S35C2, C325D8.3C2, C6.25(D4⋊S3), C33(C8.6D6), (C32×Q16)⋊2C2, C12.36(C3⋊D4), (C3×C24).19C22, C2.6(C327D8), C4.3(C327D4), C8.6(C2×C3⋊S3), SmallGroup(288,303)

Series: Derived Chief Lower central Upper central

C1C3×C24 — C3210SD32
C1C3C32C3×C6C3×C12C3×C24C325D8 — C3210SD32
C32C3×C6C3×C12C3×C24 — C3210SD32
C1C2C4C8Q16

Generators and relations for C3210SD32
 G = < a,b,c,d | a3=b3=c16=d2=1, ab=ba, cac-1=dad=a-1, cbc-1=dbd=b-1, dcd=c7 >

Subgroups: 440 in 78 conjugacy classes, 33 normal (13 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, D4, Q8, C32, C12, C12, D6, C16, D8, Q16, C3⋊S3, C3×C6, C24, D12, C3×Q8, SD32, C3×C12, C3×C12, C2×C3⋊S3, C3⋊C16, D24, C3×Q16, C3×C24, C12⋊S3, Q8×C32, C8.6D6, C24.S3, C325D8, C32×Q16, C3210SD32
Quotients: C1, C2, C22, S3, D4, D6, D8, C3⋊S3, C3⋊D4, SD32, C2×C3⋊S3, D4⋊S3, C327D4, C8.6D6, C327D8, C3210SD32

Smallest permutation representation of C3210SD32
On 144 points
Generators in S144
(1 59 40)(2 41 60)(3 61 42)(4 43 62)(5 63 44)(6 45 64)(7 49 46)(8 47 50)(9 51 48)(10 33 52)(11 53 34)(12 35 54)(13 55 36)(14 37 56)(15 57 38)(16 39 58)(17 122 86)(18 87 123)(19 124 88)(20 89 125)(21 126 90)(22 91 127)(23 128 92)(24 93 113)(25 114 94)(26 95 115)(27 116 96)(28 81 117)(29 118 82)(30 83 119)(31 120 84)(32 85 121)(65 111 140)(66 141 112)(67 97 142)(68 143 98)(69 99 144)(70 129 100)(71 101 130)(72 131 102)(73 103 132)(74 133 104)(75 105 134)(76 135 106)(77 107 136)(78 137 108)(79 109 138)(80 139 110)
(1 130 126)(2 127 131)(3 132 128)(4 113 133)(5 134 114)(6 115 135)(7 136 116)(8 117 137)(9 138 118)(10 119 139)(11 140 120)(12 121 141)(13 142 122)(14 123 143)(15 144 124)(16 125 129)(17 36 97)(18 98 37)(19 38 99)(20 100 39)(21 40 101)(22 102 41)(23 42 103)(24 104 43)(25 44 105)(26 106 45)(27 46 107)(28 108 47)(29 48 109)(30 110 33)(31 34 111)(32 112 35)(49 77 96)(50 81 78)(51 79 82)(52 83 80)(53 65 84)(54 85 66)(55 67 86)(56 87 68)(57 69 88)(58 89 70)(59 71 90)(60 91 72)(61 73 92)(62 93 74)(63 75 94)(64 95 76)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(17 75)(18 66)(19 73)(20 80)(21 71)(22 78)(23 69)(24 76)(25 67)(26 74)(27 65)(28 72)(29 79)(30 70)(31 77)(32 68)(33 58)(34 49)(35 56)(36 63)(37 54)(38 61)(39 52)(40 59)(41 50)(42 57)(43 64)(44 55)(45 62)(46 53)(47 60)(48 51)(81 102)(82 109)(83 100)(84 107)(85 98)(86 105)(87 112)(88 103)(89 110)(90 101)(91 108)(92 99)(93 106)(94 97)(95 104)(96 111)(113 135)(114 142)(115 133)(116 140)(117 131)(118 138)(119 129)(120 136)(121 143)(122 134)(123 141)(124 132)(125 139)(126 130)(127 137)(128 144)

G:=sub<Sym(144)| (1,59,40)(2,41,60)(3,61,42)(4,43,62)(5,63,44)(6,45,64)(7,49,46)(8,47,50)(9,51,48)(10,33,52)(11,53,34)(12,35,54)(13,55,36)(14,37,56)(15,57,38)(16,39,58)(17,122,86)(18,87,123)(19,124,88)(20,89,125)(21,126,90)(22,91,127)(23,128,92)(24,93,113)(25,114,94)(26,95,115)(27,116,96)(28,81,117)(29,118,82)(30,83,119)(31,120,84)(32,85,121)(65,111,140)(66,141,112)(67,97,142)(68,143,98)(69,99,144)(70,129,100)(71,101,130)(72,131,102)(73,103,132)(74,133,104)(75,105,134)(76,135,106)(77,107,136)(78,137,108)(79,109,138)(80,139,110), (1,130,126)(2,127,131)(3,132,128)(4,113,133)(5,134,114)(6,115,135)(7,136,116)(8,117,137)(9,138,118)(10,119,139)(11,140,120)(12,121,141)(13,142,122)(14,123,143)(15,144,124)(16,125,129)(17,36,97)(18,98,37)(19,38,99)(20,100,39)(21,40,101)(22,102,41)(23,42,103)(24,104,43)(25,44,105)(26,106,45)(27,46,107)(28,108,47)(29,48,109)(30,110,33)(31,34,111)(32,112,35)(49,77,96)(50,81,78)(51,79,82)(52,83,80)(53,65,84)(54,85,66)(55,67,86)(56,87,68)(57,69,88)(58,89,70)(59,71,90)(60,91,72)(61,73,92)(62,93,74)(63,75,94)(64,95,76), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,75)(18,66)(19,73)(20,80)(21,71)(22,78)(23,69)(24,76)(25,67)(26,74)(27,65)(28,72)(29,79)(30,70)(31,77)(32,68)(33,58)(34,49)(35,56)(36,63)(37,54)(38,61)(39,52)(40,59)(41,50)(42,57)(43,64)(44,55)(45,62)(46,53)(47,60)(48,51)(81,102)(82,109)(83,100)(84,107)(85,98)(86,105)(87,112)(88,103)(89,110)(90,101)(91,108)(92,99)(93,106)(94,97)(95,104)(96,111)(113,135)(114,142)(115,133)(116,140)(117,131)(118,138)(119,129)(120,136)(121,143)(122,134)(123,141)(124,132)(125,139)(126,130)(127,137)(128,144)>;

G:=Group( (1,59,40)(2,41,60)(3,61,42)(4,43,62)(5,63,44)(6,45,64)(7,49,46)(8,47,50)(9,51,48)(10,33,52)(11,53,34)(12,35,54)(13,55,36)(14,37,56)(15,57,38)(16,39,58)(17,122,86)(18,87,123)(19,124,88)(20,89,125)(21,126,90)(22,91,127)(23,128,92)(24,93,113)(25,114,94)(26,95,115)(27,116,96)(28,81,117)(29,118,82)(30,83,119)(31,120,84)(32,85,121)(65,111,140)(66,141,112)(67,97,142)(68,143,98)(69,99,144)(70,129,100)(71,101,130)(72,131,102)(73,103,132)(74,133,104)(75,105,134)(76,135,106)(77,107,136)(78,137,108)(79,109,138)(80,139,110), (1,130,126)(2,127,131)(3,132,128)(4,113,133)(5,134,114)(6,115,135)(7,136,116)(8,117,137)(9,138,118)(10,119,139)(11,140,120)(12,121,141)(13,142,122)(14,123,143)(15,144,124)(16,125,129)(17,36,97)(18,98,37)(19,38,99)(20,100,39)(21,40,101)(22,102,41)(23,42,103)(24,104,43)(25,44,105)(26,106,45)(27,46,107)(28,108,47)(29,48,109)(30,110,33)(31,34,111)(32,112,35)(49,77,96)(50,81,78)(51,79,82)(52,83,80)(53,65,84)(54,85,66)(55,67,86)(56,87,68)(57,69,88)(58,89,70)(59,71,90)(60,91,72)(61,73,92)(62,93,74)(63,75,94)(64,95,76), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,75)(18,66)(19,73)(20,80)(21,71)(22,78)(23,69)(24,76)(25,67)(26,74)(27,65)(28,72)(29,79)(30,70)(31,77)(32,68)(33,58)(34,49)(35,56)(36,63)(37,54)(38,61)(39,52)(40,59)(41,50)(42,57)(43,64)(44,55)(45,62)(46,53)(47,60)(48,51)(81,102)(82,109)(83,100)(84,107)(85,98)(86,105)(87,112)(88,103)(89,110)(90,101)(91,108)(92,99)(93,106)(94,97)(95,104)(96,111)(113,135)(114,142)(115,133)(116,140)(117,131)(118,138)(119,129)(120,136)(121,143)(122,134)(123,141)(124,132)(125,139)(126,130)(127,137)(128,144) );

G=PermutationGroup([[(1,59,40),(2,41,60),(3,61,42),(4,43,62),(5,63,44),(6,45,64),(7,49,46),(8,47,50),(9,51,48),(10,33,52),(11,53,34),(12,35,54),(13,55,36),(14,37,56),(15,57,38),(16,39,58),(17,122,86),(18,87,123),(19,124,88),(20,89,125),(21,126,90),(22,91,127),(23,128,92),(24,93,113),(25,114,94),(26,95,115),(27,116,96),(28,81,117),(29,118,82),(30,83,119),(31,120,84),(32,85,121),(65,111,140),(66,141,112),(67,97,142),(68,143,98),(69,99,144),(70,129,100),(71,101,130),(72,131,102),(73,103,132),(74,133,104),(75,105,134),(76,135,106),(77,107,136),(78,137,108),(79,109,138),(80,139,110)], [(1,130,126),(2,127,131),(3,132,128),(4,113,133),(5,134,114),(6,115,135),(7,136,116),(8,117,137),(9,138,118),(10,119,139),(11,140,120),(12,121,141),(13,142,122),(14,123,143),(15,144,124),(16,125,129),(17,36,97),(18,98,37),(19,38,99),(20,100,39),(21,40,101),(22,102,41),(23,42,103),(24,104,43),(25,44,105),(26,106,45),(27,46,107),(28,108,47),(29,48,109),(30,110,33),(31,34,111),(32,112,35),(49,77,96),(50,81,78),(51,79,82),(52,83,80),(53,65,84),(54,85,66),(55,67,86),(56,87,68),(57,69,88),(58,89,70),(59,71,90),(60,91,72),(61,73,92),(62,93,74),(63,75,94),(64,95,76)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(17,75),(18,66),(19,73),(20,80),(21,71),(22,78),(23,69),(24,76),(25,67),(26,74),(27,65),(28,72),(29,79),(30,70),(31,77),(32,68),(33,58),(34,49),(35,56),(36,63),(37,54),(38,61),(39,52),(40,59),(41,50),(42,57),(43,64),(44,55),(45,62),(46,53),(47,60),(48,51),(81,102),(82,109),(83,100),(84,107),(85,98),(86,105),(87,112),(88,103),(89,110),(90,101),(91,108),(92,99),(93,106),(94,97),(95,104),(96,111),(113,135),(114,142),(115,133),(116,140),(117,131),(118,138),(119,129),(120,136),(121,143),(122,134),(123,141),(124,132),(125,139),(126,130),(127,137),(128,144)]])

39 conjugacy classes

class 1 2A2B3A3B3C3D4A4B6A6B6C6D8A8B12A12B12C12D12E···12L16A16B16C16D24A···24H
order1223333446666881212121212···121616161624···24
size117222222822222244448···8181818184···4

39 irreducible representations

dim111122222244
type++++++++++
imageC1C2C2C2S3D4D6D8C3⋊D4SD32D4⋊S3C8.6D6
kernelC3210SD32C24.S3C325D8C32×Q16C3×Q16C3×C12C24C3×C6C12C32C6C3
# reps111141428448

Matrix representation of C3210SD32 in GL6(𝔽97)

010000
96960000
001000
000100
000010
000001
,
010000
96960000
000100
00969600
000010
000001
,
41560000
15560000
00969600
000100
00005477
00001034
,
110000
0960000
001100
0009600
000010
0000196

G:=sub<GL(6,GF(97))| [0,96,0,0,0,0,1,96,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,96,0,0,0,0,1,96,0,0,0,0,0,0,0,96,0,0,0,0,1,96,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[41,15,0,0,0,0,56,56,0,0,0,0,0,0,96,0,0,0,0,0,96,1,0,0,0,0,0,0,54,10,0,0,0,0,77,34],[1,0,0,0,0,0,1,96,0,0,0,0,0,0,1,0,0,0,0,0,1,96,0,0,0,0,0,0,1,1,0,0,0,0,0,96] >;

C3210SD32 in GAP, Magma, Sage, TeX

C_3^2\rtimes_{10}{\rm SD}_{32}
% in TeX

G:=Group("C3^2:10SD32");
// GroupNames label

G:=SmallGroup(288,303);
// by ID

G=gap.SmallGroup(288,303);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,85,120,254,135,142,675,346,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^16=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=b^-1,d*c*d=c^7>;
// generators/relations

׿
×
𝔽